It is crucial to evaluate the quality of clustering results in cluster analysis.Although many cluster validity indices (CVIs) have been proposed in the literature, they have some limitations when dealing with non-spherical datasets.One reason is that the measure of cluster revlon colorstay lip liner plum separation does not consider the impact of outliers and neighborhood clusters.In this paper, a new robust distance measure, one into which density is incorporated, is designed to solve the problem, and an internal validity index based on this separation measure hindirochakkahaniya.com is then proposed.
This index can cope with both the spherical and non-spherical structure of clusters.The experimental results indicate that the proposed index outperforms some classical CVIs.